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Assessing heterogeneous treatment effects is a growing interest in advanc-

ing precision medicine. Individualized treatment effects (ITEs) play a criti-

cal role in such an endeavor. Concerning experimental data collected

from randomized trials, we put forward a method, termed random forests

of interaction trees (RFIT), for estimating ITE on the basis of interaction

trees. To this end, we propose a smooth sigmoid surrogate method, as an

alternative to greedy search, to speed up tree construction. The RFIT out-

performs the “separate regression” approach in estimating ITE. Further-

more, standard errors for the estimated ITE via RFIT are obtained with

the infinitesimal jackknife method. We assess and illustrate the use of RFIT

via both simulation and the analysis of data from an acupuncture headache

trial.
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1 | INTRODUCTION

Precision medicine aims to optimize the delivery of stratified or individualized therapies by integrating compre-
hensive patient data. This emerging approach is a growing interest in biomedical applications. Precision medicine
faces many statistical challenges before it can be broadly deployed in clinical practice. Many available statistical
methods, driven by the “one‐size‐fits‐all” conventional medicine, are primarily concerned about the overall main
effect of a treatment over the entire population and rely heavily on the traditional significance testing. To
advance precision medicine, 1 critical statistical challenge is to understand and quantify differential treatment
effects.

There are many newly proposed approaches in this endeavor; see Lipkovich et al1 for a recent survey. Among
them, tree‐based methods2 are dominant for several reasons. Built simply on the basis of a 2‐sample test statistic,
trees facilitate a powerful comprehensive modeling scheme by recursively splitting data. Differential treatment
effects essentially involve treatment‐by‐covariate interactions, which may be of nonlinear forms and of high orders.
Trees excel in dealing with complex interactions. Furthermore, tree models are capable of handling high‐dimen-
sional covariates of mixed types and present as an off‐the‐shelf tool in the sense that minimal data preparation
is required.

Interaction trees (ITs)3 extend tree methods to subgroup analysis by explicitly assessing the treatment‐by‐covar-
iate interactions. In the “virtual twins”4 approach, subgroups are identified by first estimating the potential out-
comes. Subgroup identification based on differential effect search (SIDES)5 seeks subgroups with enhanced
treatment effects, possibly taking into account both efficacy and toxicity. Qualitative ITs6 focus on qualitative
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interactions. Loh et al7 proposed a tree procedure for subgroup identification that is less prone to biased variable
selection. The optimal treatment regime,8 which aims to find the recommended treatment based on individual
patient information, offers an alternative way of looking at the problem. Along this direction, tree‐based
approaches are also common.9,10

There are typically 2 types of precision medicine: stratified and personalized medicines. The aforementioned methods
belong to the former type, primarily concerned about stratified treatment effects or regimes where groups of individuals
showing homogeneous treatment effects are sought. Comparatively, individualized treatment effects (ITEs) are of key
importance in deploying tailored treatment plans as part of personalized medicine. A model for ITE predicts the effect
of treatment on a future patient. Individualized treatment effect assessment affords deeper study of treatment efficacy
by quantifying how heterogeneous treatment effects are and whether directional or qualitative interactions exist. This
information allows for estimation of the proportion of patients who benefit from the treatment and identification of those
who may be harmed by the treatment. Besides, ITE models can pinpoint important predictive factors,11 ie, patients'
characteristics that moderate or modify the treatment effects, and offer insight for understanding the pharmacological
mechanisms of a drug. Individualized treatment effect estimation is necessarily a first step for many methods4,9,10 in
stratified medicine and optimal treatment regime. The optimal choice of the treatments would be revealed once ITE
is known.

Our focus is on the estimation of ITE with data collected from randomized trials. One available method for this task
is separate regression (SR),4,12 in which separate predictive models for the response variable are built using data in the
treated group and data in the untreated group, respectively, and applied to each individual. The difference in predicted
response from the 2 models supplies an estimator of ITE. The idea of SR is intuitive within the causal inference frame-
work; we shall elaborate more in the ensuing sections. One major shortcoming of SR is that one has to deal with both
prognostic and predictive factors in SR, although ITE assessment involves predictive factors only. Besides, there is no
standard error (SE) formula available for the estimated ITE from SR.

To overcome the deficiencies of SR, we examine an ensemble‐learning approach for ITE estimation using IT.3 We
coin the proposed method as random forests of interaction trees (RFIT) for RFs of IT. Our methodological contribution
is threefold: First, we implement random forests (RFs) on the basis of ITs, which is different from ordinary RFs13 of clas-
sification or regression trees;2 second, a faster alternative splitting method, called smooth sigmoid surrogate (SSS), is
introduced to speed up construction of ITs; and third, we extend the infinitesimal jackknife (IJ) method14 to compute
the SEs for ITE estimates. Compared with SR, RFIT is superior by focusing exclusively on predictive factors. We inves-
tigate the performance of RFIT via extensive numerical experiments.

The remainder of this article is organized as follows. In Section 2, we first introduce the concept of ITE within Rubin
causal model framework. We then present RFIT with SSS splitting for estimating ITE and the SE formula for estimated
ITE. Section 3 contains simulation experiments that are designed to compare RFIT with other methods and assess the
proposed SE formulation. In Section 4, we illustrate our proposed RFIT approach with data from an acupuncture head-
ache trial.
2 | RF OF INTERACTION TREES

Consider a randomized trial with dataD ¼ fðyi;Ti; xiÞ:i ¼ 1; ⋯;ng consisting of n IID copies of (Y,T,X), where yi is the
continuous response or outcome for the ith subject; Ti is the binary treatment assignment indicator, 1 for the treated
group and 0 for control; and xi ¼ ðxi1; ⋯; xipÞT ∈Rp is a p‐dimensional covariate vector of mixed types.

The Neyman‐Rubin causal model15-17 provides a way of finely calibrating the causal effect of treatment T on

the response via the concept of potential outcomes. Let Y ′

1 and Y ′

0 denote the response values for a subject when
assigned to the treated and the control group, respectively. Either Y ′

1 or Y ′

0, but not both, can be observed, which is
the so‐called “fundamental problem of causal inference.”18 The observed outcome is given by Y ¼ Y ′

1T þ Y ′

0 ð1−TÞ:
Within this framework, the treatment effect can be evaluated at 3 levels: the population level EðY ′

1−Y
′

0Þ (referred
to as the average treatment effect or ATE18), the subpopulation level EðY ′

1−Y
′

0 jX∈AÞ for a subset A⊂Rp; and the
unit or subject level Y ′

1−Y
′

0. These 3 levels form a hierarchy of causal inference in increasing order of strength, in
the sense that ATE can be obtained from the knowledge of subpopulation‐level inferences, which in turn can be
obtained from the knowledge of unit‐level inferences, but not vice versa. Let δ be a generic notation for treatment
effect.

′ ′
Definition 1. The ITE is defined as δðxÞ ¼ EðY 1−Y 0 jX ¼ xÞ.
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Note that δ(x) is different from the (random) unit‐level effect ðY ′

1−Y
′

0Þ. Strictly speaking, δ(x) is a subpopulation‐
level effect among individuals with X=x. Nevertheless, δ(x) is the finest approximation to the unit‐level effect that is
possibly available in practice.

Causal inference is essentially concerned with estimating δ at different levels through the available data D. The dif-
ficulty in causal inference stems primarily from the convoluted roles (eg, confounder, effect modifier or moderator, or
mediator) played by each covariate in X. For experimental data from trials with random treatment assignment mecha-
nisms, T is independent of other variables. As a result, the unconfoundedness condition17(Y1,Y0) ╨ T |X, being
sufficient for obtaining population‐level inference from D, is trivially met. Randomization renders the confounding
issue of little concern; however, covariate modification to the treatment effects may remain at both subpopulation
and unit levels, referred to as the treatment‐by‐covariate interactions.
2.1 | SSS for identifying the best cutoff point

Interaction tree3 seeks subgroups with heterogeneous treatment effects by following the paradigm of Classification and
Regression Trees (CART)2; hence, IT supplies causal inference at the subpopulation level. Nevertheless, results from IT
can be building blocks for inferences at other levels: One has the flexibility to move backward to the ATE estimation by inte-
gration and move forward to the ITE estimation via ensemble learning. The main objective of this article is to examine the
use of RFIT in estimating δ(x). Random forests13 are an ensemble‐learning method, constructing a collection of tree models
and integrating results. Among its many merits, RF is an off‐the‐shelf method and a top performer in predictive modeling.19

To extend RFs on the basis of ITs, one essential ingredient is the splitting statistic. In CART, one splits data so that
the difference in response between 2 child nodes is maximized or, equivalently, the within‐node impurity or variation is
minimized. In IT, data are split so that the difference in treatment effects between 2 child nodes is maximized. A split on
data is induced by a binary variable of general form Δ = Δ(Xj;c) = I(Xj ≤ c) that applies a threshold on covariate Xj at
cutoff point c. When Xj is nominal or categorical, one common strategy is to sort the variable levels according to the
treatment effect estimate at each level and treat it as if ordinal. A theoretical justification for doing so can be found
in Su et al.3, Appendix A

In our setting, any binary split results in the following 2 × 2 table, where n1L denotes the number of treated subjects
in the left child node, �y1L denotes the sample mean response for treated subjects in the left child node, and so on for
notation in the other cells.
Child Node
Treatment
 Left
 Right
0
 (�y0L, n0L)
 (�y0R, n0R)
1
 (�y1L, n1L)
 (�y1R, n1R)
The splitting statistic in IT can be based on the Wald test of H0 : β3 = 0 in the interaction model:

yi ¼ β0 þ β1Ti þ β2Δi þ β3Ti·Δi þ εi with εi ∼
IID

Nð0; σ2Þ; (1)

where Δi = Δ(xij ; c). The least‐squares (LS) estimate of β3 is given by β̂3 ¼ ð�y1L − �y0LÞ−ð�y1R − �y0RÞ, corresponding to the
concept of “difference in differences.”20 The resultant Wald test statistic amounts to

QðcÞ ¼ ð�y1L−�y0LÞ−ð�y1R−�y0RÞf g2
σ̂2 1=n1L þ 1=n0L þ 1=n1R þ 1=n0Rð Þ; (2)

where

σ̂2 ¼ 1
n−4

∑
n

i¼1
y2i− ∑

k¼0;1
∑

t∈fL;Rg
nkt�y

2
kt

 !
(3)

is the pooled estimator of σ2. Q(c) measures the difference in treatment effects between the 2 child nodes. With the con-
ventional greedy search (GS) approach, the best cutoff point ĉ for Xj is ĉ ¼ argmaxcQðcÞ. It is worth noting that
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minimizing the LS criterion with model (1) does not serve well in IT. A cutoff point can yield the minimum LS criterion
merely for its strong additive effect associated with β2.

Greedy search evaluates the splitting measure at every possible cutoff point for Xj. This can be slow when the num-
ber of cutoff points to be evaluated is large, even though GS can be implemented by updating the computation of Q(c)
for neighboring c values. Furthermore, this discrete optimization procedure yields erratic fluctuations, as exemplified by
the orange line in Figure 1B. As a result, GS may mistakenly select a local spike due to large variation. These deficien-
cies motivate us to consider a smooth alternative to GS. Our idea is to approximate the threshold indicator function Δi,
involved in many components of the splitting statistic, with a smooth sigmoid function. For this reason, we call the
method “smooth sigmoid surrogate” or SSS in short. While many sigmoid functions can be used, it is natural to consider
the logistic or expit function:

sðx; a; cÞ ¼ ½1þ expf−aðx−cÞg�−1 ¼ expfaðx−cÞg
1þ expfaðx−cÞg; (4)

with a shape or scale parameter a > 0. Figure 1A depicts the expit function for different a values, where c = 0 coincides
with the mean of a standardized covariate. To approximate Q(c), we start with approximating nlτ with ñlt for l = 0,1 and
t ∈ {L,R} as follows:

n1L ¼ ∑n
i¼1TiΔi ≈ ñ1L ¼ ∑n

i¼1Tisi;

n1R ¼ n1−n1L ≈ ñ1R ¼ n1−ñ1L;

n0L ¼ ∑n
i¼1 1−Tið Þδi ≈ ñ0L ¼ ∑n

i¼1ð1−TiÞsi;
n0R ¼ n0−n0L ≈ ñ0R ¼ n0−ñ0L;

8>>><
>>>:
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FIGURE 1 Illustration of smooth

sigmoid surrogate (SSS) for splitting data:

A, the discrete threshold function Δ(x;c)
=I(x≥ c) with c= 0 (in orange) and its expit

approximation s (x;c) = expit{a (x − c)} (in

gray); B, the splitting statistic Q(c)

computed at each cutoff point c in greedy

search and its SSS approximations with

a={1,2,…,100}. In panel B, data of size

n = 500 are generated from model

y = 0.5 + 0.5T+0.5Δ+ 0.5·TΔ+ ε, where
Δ = Δ(x;c0) with true cutoff point c0=0

(indicated by the green dashed vertical

line) and both x and ε are from N(0,1). The

best cutoff point found by greedy search is

denoted by the red triangle, while the

blackblack diamond dots indicate the best

cutoff points found by SSS with different a

values. [Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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where si = s(xij;a,c) approximates Δi, n1 = ∑iTi is the total number of treated individuals, and n0 ¼ ∑n
i¼1ð1−TiÞ is the

total number of untreated individuals. Let Slt denote the associated sum of observed responses values in each cell. They
can be approximated in a similar manner:

S1L ¼ ∑n
i¼1yiTiΔi ≈ ~S1L ¼ ∑n

i¼1yiTisi;

S1R ¼ S1−S1L ≈ ~S1R ¼ S1−~S1L;

S0L ¼ ∑n
i¼1yi 1−Tið ÞΔi ≈ ~S0L ¼ ∑n

i¼1yi 1−Tið Þsi;
S0R ¼ S0−S0L ≈ ~S0R ¼ S0−~S0L;

8>>>><
>>>>:

where S1=∑iTiyi is the sum of response values for all treated individuals and similarly S0 for the untreated. Note that
quantities n1, n0=n−n1, S1, and S0=∑iyi−S1 do not involve the split variable Δi and can be computed beforehand. It fol-

lows that �ylt ¼ Slt=nlt ≈ ~Slt=ñlt ¼ ~ylt for l = 0,1 and t = {L,R}. Next, bringing ðñlt;~yltÞ into (3) gives its approximation
~σ2. Finally, plugging all the approximated quantities into Q(c) in (2) yields

~QðcÞ ¼ ð~y1L−~y0LÞ−ð~y1R−~y0RÞf g2
~σ2ð1=ñ1L þ 1=ñ0L þ 1=ñ1R þ 1=ñ0RÞ: (5)

Now, ~QðcÞ is a smooth objective function for c only and can be directly maximized to obtain the best cutoff point ĉ.
Besides c, there is a scale parameter a involved in ~QðcÞ given by (5). As shown by simulation in Section 3, the per-

formance of the SSS method is quite robust with respect to the choice of a for a wide range of values. Thus, a can be
fixed a priori. To do so, we standardize the predictor xij: ¼ ðxij−�xjÞ=σ̂ j, where ð�xj; σ̂ jÞ denote the sample mean and
standard deviation (SD) of variable Xj, respectively. For standardized covariates, we recommend fixing a at a value in
[10, 50]. With fixed a, the best cutoff point ĉ can be obtained by maximizing ~QðcÞ with respect to c and then transformed
back to the original data scale for interpretability. This 1‐dimensional smooth optimization problem can be conveniently
solved by many standard optimization routines. We use the Brent21 method available in the R22 function optimize in
our implementation. Given the nonconcave nature of the maximization problem, techniques such as multistart or
partitioning the search range may be used in combination with Brent method as further efforts to locate the global opti-
mum. However, as shown in our numerical studies, a plain application of Brent method works quite effectively in esti-
mating c.

Smooth sigmoid surrogate smooths out local spikes in GS splitting measures and hence helps identify the true cutoff
point; see Figure 1B for one example. Additional simulation studies in Section II.1 in the Supporting Web Materials
show that SSS outperforms GS in estimating c if there exists a true cutoff point. Another main advantage of SSS over
GS is computational efficiency. The following proposition provides an asymptotic quantification of the computational
complexity involved in GS and SSS splitting.
Proposition 1. Consider a typical data set of size n in the IT setting, where both GS and SSS are
used to find the best cutoff point ĉ for a continuous predictor X with O(n) distinct values. In terms of
computation complexity, GS is at best OflnðnÞng with the updating scheme and O(n2) without
the updating scheme. Comparatively, SSS is O(kn) with k being the number of iterations in Brent
method.
A proof of Proposition 1 is relegated to the Supporting Information. Implementation of tree methods benefits from
incremental updating.2,23 We note that the GS splitting with updating is commonly mistaken to be of order O(n).
Updating the IT splitting statistic entails sorting the Y values according to the X values within each treatment group.
It turns out that this sorting step would dominate the algorithm in complexity asymptotically with a rate of
OflnðnÞng. Comparatively, SSS depends on the number of iterations in Brent method, k. Although the number of iter-
ations is affected by the convergence criterion and the desired accuracy, k is generally small since Brent method has
guaranteed convergence at a superlinear rate. Based on our numerical experience, k rarely gets over 15 even for large
n. In other words, the O(kn) rate for SSS essentially amounts to the linear rate O(n). A empirical comparison of comput-
ing time between SSS and GS can be found in Section II.1 in the Supporting Web Materials.
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2.2 | Estimating ITE via RFIT

The RFIT follows the standard paradigm of RF.13 Take a bootstrap sampleDb from dataD and construct an ITTb using
Db. To split a node, a subset of m covariates are randomly selected, and the optimal split for each covariate is identified
and compared to determine the best split of the data. This step is iterated until a large tree Tb is grown. Each terminal
node τ in Tb is summarized by an estimated treatment effect δ̂τ , which is simply the difference in mean response
between treated and untreated individuals falling into τ, ie,

δ̂τ ¼ ∑
i: xi∈Db∩τ

Tiyi
n1τ

−
ð1−TiÞyi

n0τ

� �
;

where n1τ ¼ ∑i:xi∈Db∩τTi is the number of treated individuals in Db that fall into τ and n0τ for the untreated.

The entire tree construction procedure is then repeated on B bootstrap samples, which results in a sequence of boot-
strap trees fTb:b ¼ 1; 2; ⋯;Bg: An individual with covariate vector x would fall into 1 and only 1 terminal node τb(x) of

Tb: Denoting δ̂bðxÞ ¼ δ̂τbðxÞ, the ITE for this individual can then be estimated as

δ̂ðxÞ ¼ 1
B

∑
B

i¼1
δ̂bðxÞ: (6)

Efron34,14 discusses methods for computing SEs for bootstrap‐based estimators and advocates the use of IJ as a
general approach. Infinitesimal jackknife is found preferable in RFs, as further explored by Wager et al.24 Proposition

2 applies the IJ method to obtain a SE formula for estimated ITE δ̂ðxÞ. Its proof is outlined in the Supporting
Information.

^
Proposition 2. The IJ estimate of variance of δðxÞ is given by

V̂ ¼ ∑
n

i¼1

�Z2
i ; (7)

where �Zi ¼ ∑B
b¼1Zbi=B and Zbi ¼ ðNbi−1Þfδ̂bðxÞ−δ̂ðxÞg with Nbi being the number of times that the ith obser-

vation appears in the bth bootstrap sample. In other words, the quantity �Zi is the bootstrap covariance between
Nbi and δ̂bðxÞ. In practice, V̂ is biased upwards, especially for a small or moderate B. A bias‐corrected version is
given by

V̂ c ¼ V̂−
1
B2 ∑

n

i¼1
∑
B

b¼1
ðZbi−�ZiÞ2: (8)

Further assuming approximate independence of Nbi and δ̂bðxÞ, another bias‐corrected version is given by

V̂ c ¼ V̂−
n−1
B2 ∑

B

b¼1
fδ̂bðxÞ−δ̂ðxÞg2; (9)

which is easier to compute than (8).
The validity of these SE formulas will be investigated by simulation in Section 3. The bias‐corrected SE formulas in
(8) and (9) generally yield very similar results, both outperforming the uncorrected version (7). Note that computing (8)
entails evaluation of the matrix Z ¼ Zbið Þ at each different x. Therefore, the SE given in (9) is recommended for its
enhanced computational efficiency.
2.3 | Comparison with SR

Under the potential outcome framework, SR is an intuitive approach for estimating δ(x).4,12 Separate regression
builds a model for μ1(x) = E(Y1|X = x) based on data of treated individuals only. This step essentially involves pre-
dictive modeling of the observed response Y on the covariates X using the treated group data; RFs13 can be used for
this purpose. Similarly, a model for μ0(x) = E(Y0|X = x) is built using data of untreated individuals only. For an
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individual with covariate vector x, both models are applied to each individual to predict his or her mean potential
outcomes. Let μ̂0ðxÞ and μ̂1ðxÞ denote the resultant estimates of μ0(x) and μ1(x), respectively. Individualized treat-
ment effects can be estimated as

~δðxÞ ¼ μ̂1ðxÞ−μ̂0ðxÞ: (10)

It is worth noting that it is tempting to use the observed response Y of a treated (untreated) individual as an estimate
for μ1(or μ0) directly. But this is not a good idea due to the potentially inflated variance.

We argue that RFIT is superior to SR, mainly because RFIT works on a simpler problem. To explain, consider the
model form Y = μ0(x)+Tδ(x)+ ε, where μ1(x) = μ0(x)+ δ(x). Functions μ0(x) and δ(x) may involve different sets of
covariates. In the clinical setting, covariates showing up in μ0(x) are called prognostic factors, while covariates showing
up in δ(x) are called predictive factors.11 In other words, predictive factors interact with the treatment and hence cause
differential treatment effects. In SR, both μ1(x) and μ0(x) have to be estimated in order to estimate the difference δ(x);
thus, it must take both prognostic and predictive factors into consideration. Comparatively, RFIT estimates δ(x) directly
by focusing on predictive factors only. This is because a prognostic factor does not cause a difference in differences,
referring to the splitting statistic in (2) for RFIT. In the following, we introduce a performance measure for RFIT and
SR in estimating ITE δ(x), and a theoretical understanding of the measure is attempted.

Both RFIT and SR take the bootstrap‐based ensemble‐learning approach. The ITE estimates δ̂ðxÞ in (6) and ~δðxÞ in
(10) involve randomness owing to bootstrap resampling, the current data D, and the point x at which the estimation is
made. To compare RFIT with SR, we consider an average mean‐squares error (AMSE) measure defined by

AMSE ¼ EX;D;Bfδ̂ðXÞ−δðXÞg2; (11)

where the expectation is taken with respect to the bootstrap distribution B given the current data D, the sampling dis-
tribution of data D, and then the distribution of X.

Define

�δðx;DÞ ¼ EB fδ̂ðxÞg; and �δðxÞ ¼ ED f�δðx;DÞg; (12)

where �δðx;DÞ is the RFIT estimate of δ(x) obtained with perfect bootstrap or B→∞ and �δðxÞ is the perfect bootstrap
RFIT estimate if, furthermore, we are allowed to recollect data D freely. Similarly, we define f�μ0ðx;DÞ; �μ0ðxÞg on the
basis of μ̂0ðxÞ and f�μ1ðx;DÞ; �μ1ðxÞg on the basis of μ̂1ðxÞ in SR. Proposition 3 provides a decomposition of the AMSE
for the ITE estimate δ̂ðxÞ by RFIT and for ~δðxÞ by SR.

^
Proposition 3. For the RFIT estimate δðxÞ in (6),

AMSE ¼ EX;D;B δ̂ðXÞ−�δðX;DÞ
n o2

þ EX;D
�δðX;DÞ−�δðXÞ� �2 þ EX

�δðXÞ−δðXÞ� �2
: (13)

For the SR estimate ~δðxÞ in (10),

AMSE ¼ EX;D;B μ̂1ðXÞ−�μ1ðX;DÞf g2 þ EX;D �μ1ðX;DÞ−�μ1ðXÞf g2 þ EX �μ1ðXÞ−μ1ðXÞf g2
þ EX;D;B μ̂0ðXÞ−�μ0ðX;DÞf g2 þ EX;D �μ0ðX;DÞ−�μ0ðXÞf g2 þ EX �μ0ðXÞ−μ0ðXÞf g2
−2EX f�μ1ðXÞ−μ1ðXÞgf�μ0ðXÞ−μ0ðXÞg½ � :

(14)
The first term of the AMSE in (13) corresponds to Monte Carlo variation resulting from using a finite number of B
bootstrap samples. The second term represents the sampling variation owing to the lack of an endless supply of training
data in reality. The third term is the bias. An analogous interpretation applies to the terms in (14), yet with an additional
covariance term −2EX f�μ1ðXÞ−μ1ðXÞgf�μ0ðXÞ−μ0ðXÞg½ �. It is worth noting that such a decomposition holds true for gen-
eral bootstrap‐based ensemble predictions.

Ensemble learners such as RF and bagging aim for variance reduction by imitating the endless supply of replicate
data via bootstrap resampling. This is why we have the additional decomposition

EX;D;Bfδ̂ðXÞ−�δðXÞg2 ¼ EX;D;B δ̂ðXÞ−�δðX;DÞ
n o2

þ EX;D
�δðX;DÞ−�δðXÞ� �2

in (13), similarly for μ̂1ðXÞ and μ̂0ðXÞ in (14). However, ensemble learning has little effect on the bias term
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EXf�δðXÞ−δðXÞg2 in (13), similarly for the 2 bias terms in (14) as well as the covariance term
−2EX f�μ1ðXÞ− μ1ðXÞgf�μ0ðXÞ− μ0ðXÞg½ �. The bias problem for ensemble learners such as RFs has been noted by
Breiman25 and others. From another perspective, RF facilitates a smoothing procedure by averaging data over an adap-
tive neighborhood; as a result, it cuts the hill and fills the valley.

While both RFIT and SR would suffer from certain bias, the AMSE in SR tends to be larger than that of RFIT in
general, as we shall demonstrate numerically in Section 3. Numerical evidence shows that SR is more prone to the
bias problem because it tends to underestimate a large ITE and overestimate a small ITE. In fact, such a bias
also has an effect on the last covariance term in (14). A large ITE δ(x) occurs when μ1(x) is large and/or μ0(x) is
small. The smoothing effect yields �μ1ðXÞ− μ1ðXÞ< 0 with cut hills and �μ0ðXÞ− μ0ðXÞ> 0 with filled valleys.
Thus, f�μ1ðXÞ−μ1ðXÞgf�μ0ðXÞ−μ0ðXÞg tends to be negative. A similar observation holds for a small ITE, which occurs
when μ1(X) is small and/or μ0(X) is large. As a result, the last term in (14) tends to be negative, leading to a more inflated
AMSE for SR.
3 | SIMULATION STUDIES

This section presents results from simulation studies designed to compare RFIT with other methods in estimating the
ITEs. We also investigate the SE formulas for the ITE estimates by RFIT.
3.1 | Comparison in estimating ITE

To compare RFIT with other methods, we generate data by the following scheme. First, simulate 5 (p = 5) predictors
xj ∼ uniform[0, 1] for j = 1,…,5 with a common correlation ρ. This is achieved by simulating multivariate normal vectors
with the common correlation ρ′ ¼ 2sinðρπ=6Þ and applying the probability integral transform.26 Two correlations
ρ ∈ {0, 0.5} are considered. Then, we generate y′0 ¼ μ0ðxÞ þ αþ ε0 with a nonlinear polynomial mean function
μ0ðxÞ ¼ −2−2x1−2x22 þ 2x33, and α and ε0 independently follow a Nð0; 1Þ distribution. Next, we generate

y′1 ¼ μ1ðxÞ þ αþ ε1, where μ1(x) = μ0(x) + δ(x) and ε1 ∼Nð0; 1Þ is independent of both α and ε0. The random effect
term α is introduced to mimic some common characteristics shared by repeated measures Y ′

0 and Y ′

1 taken from the
same subject. The unit‐level effect Y ′

1−Y
′

0 equals δ(x) + (ε1 − ε0), where (ε1−ε0) represents additional random errors that
cannot be accounted for by covariates x. Four models (I)‐(IV) are considered for the ITE δ(x), as tabulated below:
Model
 Form
 var( μ1(X))
 var(δ(X))
 var(α+ε)
I
 δ(x)=5
 1.009
 0.000
 1.996
II
 δ(x)=−5+5x1+5x2
 1.017
 4.183
 2.002
III
 δ(x)=−5+5x4+5x5
 1.002
 4.201
 1.998
III
 δ(x)=−2+2I(x1≤0.5)+2I(x2≤0.5)I(x3≤0.5)
 1.014
 1.764
 1.996
IV
 δðxÞ ¼ −6þ 0:1expð4x1Þ þ 4expf20ðx2−0:5Þg þ 3x3 þ 2x4 þ x5
 1.012
 6.316
 1.999
V
 δðxÞ ¼ −10þ 10sinðπx1x2Þ þ 20ðx3−0:5Þ2 þ 10x4 þ 5x5
 1.009
 23.837
 1.990
Model I is a null model where the treatment does not have heterogeneous effects. Both models II and III exem-
plify a linear ITE, but X1 and X2 are both prognostic and predictive in model II, while model III contains different
sets of covariates as prognostic factors (X1,X2,X3) and predictive factors (X4,X5). Model III represents a tree‐struc-
tured model. Models IV and V are 2 nonlinear models derived from Friedman.27 Finally, we simulate the random-
ized treatment assignment variable T independently from a Bernoulli(0.5) distribution and hence the observed
response y ¼ Ty′1 þ ð1−TÞy′0. Also provided in the above table are the empirical variances (based on 100 000 reali-
zations) of the additive effect μ0(X), ITE δ(X), and the error term α+ε. These variance values inform us about the
signal‐to‐noise ratio in each model.

For each training data setD, 4 methods are used to learn a model on ITE: single IT analysis, SIDES, RFIT, and SR.
In IT,3B = 30 bootstrap samples are used to determine the final tree structure. The default setting is used in SIDES. A
total of B = 500 bootstrap samples are taken in RFIT and SR. In RFIT, we set a = 10 in SSS splitting. The number m of
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randomly chosen covariates to examine at each node splitting is set as m = 2 in both RFIT and SR. To evaluate perfor-
mance, a test sample D′ of size n′ = 2000 is generated beforehand. The ITE models trained with different methods in
each simulation are applied to estimate the ITE for D′, and a mean‐squared error (MSE) measure

MSE ¼ ∑n′
i¼1fδ̂ðxiÞ− δðxiÞg2=n′ is computed. Two sample sizes n ∈ {100, 500} are considered for the training data D,

and a total of 100 simulation runs are used for each simulation setting.
Figure 2 presents parallel boxplots of the MSE measures when the covariates {X1,… ,X5} are independent ( ρ = 0).

The averaged MSE over 100 simulation runs is highlighted with blue bars in each boxplot, corresponding to esti-
mates of the AMSE in (11). It can be seen that SIDES perform poorly in all scenarios. SIDES is not suitable for
the task of ITE estimation since it essentially splits data into at most 2 groups: one subgroup containing individuals
with enhanced treatment effects and the other group formed by the remaining individuals. Both RFIT and SR out-
perform IT for a great deal except the null case, model I, indicating an advantage of ensemble‐learning methods over
the single tree analysis. In comparison with SR, RFIT tends to have smaller MSE values consistently in nearly all
scenarios except model I, where SR slightly outperforms RFIT. In this null model, RFIT forces superfluous partitions,
while SR mainly accounts for the effects of prognostic factors. Again, the superiority of RFIT in nonnull cases can be
explained by the fact that it works on an easier task than SR by examining predictive factors only. The amount of
outperformance varies, depending on factors such as the sample size, the signal strength, and the level of nonline-
arity. Some additional results are relegated to the Supporting Information. Numerical insight into the bias problem
FIGURE 2 Comparison of interaction tree (IT), subgroup identification based on differential effect search (SIDES), random forests of

interaction trees (RFIT), and random forest (SR) in estimating individualized treatment effect: the independent ( ρ = 0) case. Parallel

boxplots of mean‐squared error (MSE) values are based on a test sample of size n′=2000 with 100 simulation runs. The blue middle bar

indicates the average of MSE measures [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


10 SU ET AL.
is provided by plotting the averaged ITE estimates δ̂ðxÞ versus the actual ITE δ(x). Having correlated covariates (with
ρ = 0.5) does not seem to affect the results much.
3.2 | SE formulas

To investigate the validity and performance of the SE formulas, we generated training data sets of size n=500 from

model III and 1 test data setD′ of size n′=50. For each training data setD, RFIT is trained with B=2000 bootstrap sam-
ples and applied to estimate ITE for each observation in D′, together with SEs. We repeat the experiment for 200 sim-
ulation runs. At the end of the experiment, we have 200 predicted ITE δ̂ for each observation in D′, together with 200
SEs. We compute the SD of these ITE estimates δ̂ and average the SE values. If the SE formula works well, the averaged
SE values should be close to their corresponding SD values.

Figure 3 plots the average SE versus SD for each observation in the test sample D′. It can be seen that the uncor-
rected SEs are overly conservative. After bias correction, the average SEs become reasonably close to the SD values.
The bias‐corrected SE presented here is computed from (9). The other version (8) that is somewhat harder to compute
provides very similar results, which have been omitted from the plot.

We experimented with other models in section 3.1, and similar results were obtained. One issue pertains to the num-
ber B of bootstrap samples needed. According to Efron,14 a large B, eg, B = 2000, is needed to guarantee the validity of
IJ‐based SEs. We experimented with different B values. Generally speaking, ITE estimation stabilizes quickly even with
a small B, eg, B = 100; however, negative values may frequently occur for the bias‐corrected variance estimates in both
(8) and (9) when B is small or moderate, eg, B = 500. Thus, a large number of bootstrap samples are needed to have
sensible results for the SE formula.
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FIGURE 3 Plot of averaged standard errors (SE) versus sample standard deviation (SD) of predicted individualized treatment effect δ̂ðxÞ
for n′=50 observations in a test sample. The SDs are computed based on 200 simulation runs, while the SEs are averaged over the 200 runs. In

each simulation run, a training sample of size n=500 is generated from model III, and a bootstrap size B = 2000 is used to build random

forests of interaction trees. The bias‐corrected and uncorrected SE averages for the same observation are connected by a gray line segment.

The reference line in green is y = x [Colour figure can be viewed at wileyonlinelibrary.com]
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4 | APPLICATION: ACUPUNCTURE TRIAL

For further illustration of RFIT, we consider data collected from an acupuncture headache trial,28,29 available at https://
trialsjournal.biomedcentral.com/articles/10.1186/1745-6215-7-15.

In this randomized study, 401 patients with chronic headache, predominantly migraine, were randomly assigned
either to receive up to 12 acupuncture treatments over 3 months or to a control intervention offering usual care. Among
many other measurements, the primary endpoint of the trial is the change in headache severity score from baseline to
12 months since study entry. The acupuncture treatment was concluded effective overall in bringing down the headache
score significantly more than the control group. More details of the trial and its results are reported in Vickers et al.28

To apply RFIT, we consider only the 301 participants who completed the trial. The response variable is taken as the
difference in headache severity score between baseline and 12 months, whereas the score at baseline is treated as a
covariate. There are 3 subjects with some missing data, which are imputed with RFs (see R pacakge missForest30). A
total of 18 covariates are included in the analysis; these are demographic, medical, or treatment variables measured
at baseline. See Table 1 for a brief variable description.

A total of B=5000 trees are used to build RFIT, where the scale parameter a is set as a=10 in SSS splitting. Individ-
ualized treatment effect is estimated for each individual in the same data set, and the IJ‐based SE with bias correction is
also computed. Figure 4A provides a bar plot of the estimated ITE, plus and minus 1 SE, sorted by ITE. It can be seen
that most (76.85%) ITEs are above 0, indicating the effectiveness of acupuncture in achieving a greater reduction in
headache severity score from baseline to month 12 in comparison with the control group. Overall speaking, the treat-
ment effects in this trial show certain heterogeneity, but not by much. It is interesting to note that the averaged ITE
is 3.9. Comparatively, the unadjusted effect of acupuncture (ie, mean difference between acupuncture and control
groups in headache severity score change from baseline to month 12) is estimated as 6.5, while the adjusted effect from
ANCOVA is 4.6, as reported in Vickers et al.28, Table 2 Figure 4 also shows many individuals, for whom the acupuncture
TABLE 1 Variable description for the headache data

Name Description

id Patient ID code

diff Difference in headache severity score between one year follow‐up and baseline, i.e., (pk5 ‐ pk1)

group Randomized treatment assignment: 0 is control; 1 is acupuncture

age Age

sex sex: 0 male; 1 female

migraine Migraine: 0 No and 1 Yes

chronicity Chronicity

pk1 Severity score at baseline

f1 Headache frequency at baseline

pf1 Baseline SF36 (36‐Item Short Form Health Survey) physical functioning

rlp1 Baseline SF36 role limitation physical

rle1 Baseline SF36 role limitation emotional

ef1 Baseline SF36 energy fatigue

ewb1 Baseline SF36 emotional well being

sf1 Baseline SF36 social functioning

p1 Baseline SF36 pain

gen1 Baseline SF36 general health

hc1 Baseline SF36 health change

painmedspk1 Medication Quantification Scale (MQS) at baseline

prophmqs1 MQS of prophylactic medication at baseline

allmedsbaseline Total MQS at baseline

https://trialsjournal.biomedcentral.com/articles/10.1186/1745-6215-7-15
https://trialsjournal.biomedcentral.com/articles/10.1186/1745-6215-7-15
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treatment did not help much. Two individuals, the 44th (with patient ID 222) and the 224th (with patient ID 630), are
noteworthy. Both are female patients aged 60 and 58, suffering migraine headaches and being assigned to the control
group, but they surprisingly achieved a reduction of 36 and 29.75 in headache severity score, respectively. Their initial
severity scores are relatively similar as well: 44.25 and 37. Their estimated ITEs turn out to be −14.81 and −9.09, indi-
cating a detrimental effect from acupuncture. Although the performances of these 2 patients are quite unusual relative
to the rest of the patients, they may indicate a small subgroup that is worth further investigation. Figure 4B plots the
estimated ITE by SR versus the estimated ITE by RIFT. The LS fitted (red dashed) line almost overlaps with the refer-
ence (solid green) line y=x, indicating that the 2 methods provide similar ITE estimates in this example.
5 | DISCUSSION

We have implemented RFs of ITs to tackle the problem of estimating ITEs. To this end, we have introduced SSS splitting
to speed up RFIT and possibly improve its performance. We have also derived an SE for the estimated ITE by applying
the IJ method. Altogether, RFIT provides enlightening results for deploying personalized medicine by informing a new
patient about the potential effect of the treatment on him or her.

According to our numerical experiments, RFIT outperforms the SR approach for estimating ITE. Separate regression
estimates the potential outcomes separately and then takes difference. In RFIT, we group individuals so that those with
similar treatment effects are put together and then estimate the treatment effect by taking differences within each
group. Comparatively, RFIT focuses on predictive covariates and estimation of ITE directly, while SR has to deal with
both prognostic and predictive covariates. Since SR is used as an intermediary step in other causal inference procedures,
our method might contribute to their improvement as well.

To conclude, we identify several avenues for future research. First of all, our discussion has been restricted to data
from randomized experiments. Assessing treatment effects with data from observational data can be very different,
entailing adjustment for potential confounders.31-33 Secondly, the SE formula provides some assessment for precision
in estimating ITE; however, issues such as consistency of RFIT, asymptotic normality of estimated ITE (see comments

http://wileyonlinelibrary.com
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in Efron14), and multiplicity have not been thoroughly addressed as of yet. Thirdly, the current version of RFIT is not
free of variable selection bias,7 and how to address this problem with the SSS approach awaits further investigation.
Fourthly, several other features in RFs including variable importance ranking, partial dependence plots, and the prox-
imity matrix19 have yet to be explored for RFIT. Like RFs, RFIT is essentially a black‐box tool for predicting ITE,
although the IJ‐based SE supplies additional reliability measure. The last direction of future research is closely related
to how to extract meaningful interpretations of RFIT. Specifically, the variable importance measure can sort out impor-
tant effect modifiers of the treatment; the partial dependence plot can depict how a covariate modifies the treatment
effect under the intertwined influences of other covariates; the proximity matrix can identify a neighborhood of a future
patient in terms of how similarly they react to the treatment. To make these additional features of RF better suitable for
ITE assessment, major modifications are needed, which warrants future research.
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